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ABSTRACT

....• • EXPLICIT AND IMPLICIT CALCULATIONS OF TURBULENT
: CAVITY FLOWS WITII AND WITHOUT YAW ANGLE

.! Guan-Wel Yen
Old Dominion University

Advisor: Dr. Oktay Baysal

•/ Computations have been perl0rmed to simulate turbulent supersonic flows past _i

: three-dimensional deep cavities with and without yaw. Simulation of these self-sustained ;,_

; oscillatory flows have been generated through time accurate solutions of the Reynolds

• averaged complete NavJer-Stokesequationsusing two different schemes:(I) MacCormack, !"i

:" flnite-differonce£ (21 implicit, upwind, finite-volume schemes. The second scheme, which ,

" is approximately 30% faster, is found to produce bettor time accurate results. The
©_.

'_" Reynolds stresses have been modeled, using the Baldwin-Lomax algebraic turbulence

,_ model with certain modifications. The computational results include Instantaneous and

i_ time averaged flow properties everywhere in the computational domain. Time series

:,: analyses have been performed for the instantaneous pressure values on the cavity floor. !,:: The time averaged computational results show good agreement with the experimental

?_ data along the cavity floor and walls. When the yaw angle Is nonzero, there is no

_ longer a single length scale (length-to-depth ratio) for the flow, as is the ease for zero '
I-

:_! yaw angle flow. The dominant directions and inclinations of the vortices are

dramatically different for this nonsymmetric flow. The vortex shedding from the cavity ,*
.i

• Into the mainstream flow is captured computatlonally. This phenomenon, which Is due i

to the oscillation of the shear layer, is confirmed by the solutions of both schemes. 'i

i
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".!""_i_: .. BACKQItOUND

!:
_, t.I Objectives

e

j

,_ It is often inevitable to have a cavity on an a=rodynamic configuration, such as,

4:°i a weapons bay, a landing gear, or similar recessed areas. Carrying weapons int_rn,lly '

2'," in high speed fighter-bomber aircraft (e,g. B-I, FB-Illl offers many benefits, suc',, as,
L,

, Meatsr maneuverability, longer cumber range, reduction of weapon and landing _ee-

*_'*; aerothermal heating preblems, am/ reduction o£ radar detection slgna,t,_, .,. H-J',_ ....

: ,_ a cavity flow at high speed may be a sc,urce of flow insta_:.,_ ,,. _'tne presence of a

_' ,' cavity _,Jd structure may cause large fluctuations of presst_re and velocity, which

generate strong acoustic waves. This may damage the aircraft structure, the weapon

devices, and a_ect the avionics on board.

_ Earlier report_ in the literature (e.g. refs. 1, g) have provided descriptlons of

o_. cavity flows. Many investigations, both experimental and computational, have bee:,
• ,/-',

:_. conducted to study the flowfleld inside two and three-dimensional rectangular cavities.

__i Some examples of viscous calculations of cavity flows are given in refs. 3 - 5. The

" oblectiw_ of this research effort are focused on further understanding _£ the cavity¢%

_'_" flow phenomenon for deep cavities, and to analyze the pressure fluct_tions within deep ';

i. cavities. Purthermore, it is aimed to provide:

" 1. valid computational solutions for deep cavity flows at sups, sonic speeds,

2. qualitative understanding of three-dimensional cavity flows through enhanced

,_°;_ computational graphics,

_..__ 4" |

i

*_'_"__'_"_ "_ _........... ;_"*"*" . _ _" o ,o_'_" 2 _ ....° .....
:_,._-.,_,'"_a,o.:"_.,_".........' ""o_... -_' •..,'_"° """" _ _' "°...... "_'_ _ 00000001 -TSAI_
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_' $, valid computstional solutions for _r_,. past a cavity at yaw,• _'r

-_. 4. comperison of the solutions for cavity flows from two different numerical

schemes (explicit, finite-difference, MacCormack scheme and implicit, finite. .-

volume, upwind scheme), _'

5. a study of three-dimensional unsteady flow seperatJon,

6. a comparisonof time averaged end instantaneousproperties of the flow

solution obtained computetio_ally with the experimental data.

A literature survey on cavity flows are given in the next two sections. The _¢

phy_.cs of cavity flows and their classification are given in Chapter 2. The governing I

k

equations and the corresponding boundary conditions are detailed in Chapter 3. The

solution algorithms and the Mid generations are discussed in Chapter 4. The results

are discussed in Chapter 5, and conclusions and recommendations are given in Chapter

6.

1.2 Experimental Literature on Cavity _'lows

P_shko [2) studied the time-averaged effects of flows over various cavities at low

Mach numbers. Pressure coefficients at various points on the cavity walls and floor

wore measured and friction coefficients were calculated. For a deep cavity, a single

vortex was seen to exist inside, and smaller secondary vortices were also observed at

the corners of the cavity. For a shallow cavity, the shear layer was seen to be at-

tached to the floor of the cavity enclosing vortices on eit_,er side. Roshko concluded

that the increased drab due to the cavity stemmed From the stagnation pressure on

the downstream cavity wall as the shear layer impinged on it. Karamchetl ill per.

formed an extensive study of the sound radiated by flows over rectangular cavities

using a fiat plate with a cavity of variable length mounted in a blow down tunnel.

The Math number was varied f_om 0._5 to 1,5. S_.hlieren and interforometer techniques

• ,T-_-_.. .. _ .. ._ _ ,o _ .,# ...... ,>:._%.,.;., _ ..... _;_ _ - ..... _;_...., _ ", " u o I



"'/T
. 3

t'

were Lisod to visunljse the acoustic fluctuations and to .get quantitative measures of the ':,

_ decibel level and directionality of' the radiated sound. The boundary layer was changed

i: .. between laminar and turbulent re_mes using the flat plate angle of attack and a trip

i_l, wire, and its characteristics were measured using hot wire anemometry, He observed

_.j that below a minimum cavity length, the shear layer lumped acrossthe cavity without
/" impinging on the downstream wall or generating acoustic oscillations. Above this !

!, length, the wavelength of the oscillations was proportional to the cavity length. When _!

"** the boundary layer was turbulent, several harmonics were observed, floweret, the peak ?i

ii_ amplitudes observed were considerably less th_n in the case Of the laminar boundary I_

i layer, i
Macl)oarmon [6] has presented the results of systematic variations of depth, span,

_ and upstream and downstream lip radii on the flow characteristics in a rectangularI

!-_i cavity on a flat plate at a Mach numbt ,f 3.55. Plumbee et el. 171 studied the
_ _ acoustic response of large cavities in flows of Mach number 0.2 to 5.0. Both discrete

_il tones and broadband noise generated by the cavity flow were observed. Rapid

' i fluctuations occurred in the separated boundary layer, and depending on flow conditions,
J.

., both expansion waves and shocks were observed at the separation point near the cavity.

:-_ The static pressure in the cavity increased with t_creasing cavity depth. The deep

ii cavitieswould resonate primarily in the depth modes, while longer cavities would show

i_i_ lengthwise modes and random buffeting. The most significant drawback of his theoryi,f

was that shear layer turbulence was considered to be the driving mechanism for
i

•' _!i.,,_. periodic oscillations, contrary to the observations of Karamcheti Ill and others that the i

_i " oscillations were much stronger when the shear layer was laminar as opposed to t

turbulent." East 181observed that deep cavity resonanceappeared to result from simultaneous

: doubly-tuned amplification of shear layer unsteadiness by both I've shear layer edge tone



!: and the cavity enclosureactiag u an ,_eousticresonator. Three.dimensional effects due

il to variations in the transverse dimension of the cavity did not appear to alto'/ the

l: unsteady efrecte. Rossiter i91 performed wind tunnel tost_son subsonicand transonic ..

ti flows ( 0.4 < M < 1.2 ) over shallow cavities. Cavities of I2D >10 were found to

_il generate smooth broadband pressure fluctuation spectra, as opposed to cavities at L/D

of I and 2, which generated dominant periodic fluctuations. Higher harmonics of the

discrete tones were attributed to the distorted wave formes of the oscillations, lligh
l

speed shadowgraph motion pictures showed that the shear layer roiled up into discrete

vortices, shed periodically from cavity loading edge. t

Spee [101 observed periodic inflow and outflow of air close to the trailing edge,

and an accompanying lateral displacement of the shear, layer. Continuous production _'

of vorticity occurred at the leading edge, as opposed to discrete vortex shedding. The !

"captive vortex" or recirculation sone .in the cavity was seen to Ip_w and shrink

periodically. Root-mean-sqnare pressure fluctuations reached 4095 of dynamic pressure,

which was too large to be explained by the linear acoustic theory. At low Mach

numbers., the acoustic source exhibited monopole behavior. The radiated sound waves

were sinusoidal initially, later becoming oawtoothed as they propagated into the far

field.

McOregor and White [11] measured the drag of rectangular cavities in supersonic

tand subsonic flow (0.3 < M < 3.0), they also provided sehlieren pictures. The pres-

sure wave generated by the impact of the vortex at the trailing edge went upetreaw., •

and 8nothor vortex was abed. The steady.state drag of the cavity was attributed to

the impact pressure at the downstream wall. When resonance occurred, a 25095

in©fosse t drag was observed, which was attributed to the large deflection of the
4

shear layer and resultant loss of momentum. Holler, Holmes, and Covert [121
I"

conducted wind tunnel tests on cavities with L/D ratios of 4 to ? over a Mach number

00000001-TSBO3



range from 0.8 to $, obtaining spectra of pressure fluctuations inside the cavity and ',

under the approaching boundary layer. They also observed stropger spectral peaks

when the boundary layer was laminar. Pressure fluctuations were seen to be highesttm

near the trailing edge, falling oft inversely with distance towards the leading edge.
5

'" Stallings and Wilcox 1131 h.ve measured flow past various cavities to obtain

cavity pressure distributions for a wide range of supersonic Mach number. The test

Mach number .were varied from 1 5 to 1.86 for cavity depths and widths from 0.5 to

2.5 inches and cavity lengths from 0.5 to 1.2 inches. These pressure distributions ,'!

together with Schlieren photographs were used to define the critical values of cavity _i

length to depth ratio (L/D) that separate deep cavity flows from shallow cavity flows, il
I

It was further observed that a large improvement in the correlation of measured cavity ' ;

centerline pressure distribution for cavities of various depths were obtained when both i

the cavity width to depth (W/D) ratio and length to depth (L/D) ratio were held I

constant rather than L/D alone. Decreasing cavity width resulted in a reduction in 'I

(L/D) . Three-dimensional effects in the form of large lateral pressure gradients _i
m!

occurred on the rear face of the cavities that had closed cavity flow fields.
• i

li

Heller and Bliss [14J. conducted wind tunnel tests on cavities of LID ratios from i

2.3 to 5.5 and over a Mach number range of 0.8 to 2.0. Detailed information on the |
t

normalized levels of the first three resonant modes in the cavity for a range of cavity

IJD and free-stream Math numbers were obtained. It was shown that the cavity

temperature was close to the stagnation value with recovery factors between 0.8 and

0.95. Shaw [151 performed wind tunnel tests on a cavity model with variable length !

to depth ratio. The test Mach numbers were 1.5 to 2.86 and Reynolds numbers from
.i

1.0 to 4.0 million/foot. The model was tested at two angles of attack, two yaw angles

" and two cavity widths. Acoustic data were obtained for almost all combinations of the i

I

00000001-TSB04
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test parameters. Sound pressure levels as high ee 165dB were measured. Reynolds ',

: number was shown to strongly s_'ect excitation of specific resonant modes.

1.3 Literature on Prediction Methods for Cavity Flows ..

Weiss and Florshetm 1161modeled • low Reynolds number flow in a deep cavity,

neglecting conve_tion of vorticity, and obtained results showing steady, double-celled

reclrculating flow inside the cavity. Pan and Acrivos [171 used a relaxation technique

J; to obtain creeping.flow solutions for rectangular cavities of L/D ratios 0.2 to 4. _.i

: According to their results, the steady flow in a cavity at high Reym.lds number /

consisted of a single core of uniform vorticity, with viscous effects confined to their i_l

shear layers near the boundaries. For infinitely deep cavities, the viscous and inertial

' forces would be comparable at all Reynolds numbers.

; Mehta and Lavan [18] calculated the flow in a two-dimensional channel with a

rectangular cavity in the lower wall and the upper wall moving at uniform velocity.

They solved the Navier-Stokes equations for a laminar incompressible flow. O'Brien [19]

studied closed streamlines associated with the channel flow over a cavity. The viscous

: Stokes flow in a rectangular cavity with parallel shear flow was calculated by a direct

finite difference technique, Naliaswamy and Krishnapresad [20J studied steady cavity

...* flows at high Reynolds numbers ( 0 < Re < 50,0001. Three fully viscous eddies were

=: found inside the cavity, and obtained velocity, temperature, vorticity, and heat flux "_

Jprofiles inside the cavity.

i Bilanin and Covert [21] assumed that shear layer instability as well as interaction

between the shear layer and the cavity trailintl edg_ were required to sustain discrete ,|J

frequency oscillations. They modeled the shear layer as a vortex sheet excited at the _]
| Imm .,--, ,,. .oo,o.,,oo.,,.. |1

-'r |1
edgeuanaeousti©monopele. Theyobtainedquantitativelycorrectacousticmode " 'ilb

|1
shapes and possible excitation frequencies for shallow cavities for 0.8 < M < 3.0.

r

.e'%-G.

00000001-TSB05



"i I

i,_.
7

i, Smith and Bhaw 122l developed empirical prediction methods for modal frequencies, "i
° medal amplitudes, broadband amplitudes, L/D effects, Mach number effects, and

i/ ' t4

,,.._ longitudinal distribution of fluctuating pressures.

_ :_. Block [23J studied the noise responseof cavities of.varying dimensionsat subsonic J
o' to

!i speeds. She included the effect of the L/D ratio in Rossitsr's model for oscillation

frequencies, and the maximum amplitude, ller formula for the maximum-amplitude

: _ Mach number was of the form: .,

../,_ M:(I/K)(L/D)/ {4nll+A (L/D)s.I(L/D) + 0.514]) (I.I) !

_' where K is the real part of the wave number of the disturbance traveling down- _I1

o_,/' stream, n is the mode number, and A and B are empirical constants. Interactions bii

--_,_'. betw_,_n the depth and length modes were found. 'i

_'_': Hardin and Mason [24] developed a potential flow model of two-dimenslonal cavity i,

'_ flow in which the shear layer was represented by discrete rectilinear vortices in order

_.:
_, to predict and explain the broadband noise generation phenomenon. The spectra and

i_ directivity of the quadrupole noise source determined by their theory were found to

_'_:i compare well with observed results for real aircraft. Borland [251 solved the two-
o_; dimensional guler equations for the time_iependent invtscid compreuible flow over a l

cavity. He modeled the shear layer oscillation and used a piston at the rear bulkhead

to simulate the mass addition and removal at the trailing edge of the cavity.

Hankey and Shahs [26] analyzed pressure oscillations in an open cavity using the

unsteady Navier-Stokes equations. With supersonicflow outside the cavity, the Mach

numbar inside the cavity was found to be 0.5. The sound inside the cavity propagated

. upstream at about half the _eestream velocity. The shear layer was soan to be

unstable for low frequencies such that

• 1/( 47r} > fK/U (1.2) t

where K is the boundary layer thickness, and U the freastrcam velocity. Short cavities t

4J i .:i
I

P
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whose lengths were less then ?,'IK would not resonete. Above M:2o5, no Kaylelgh

instability was found for the shear layer. Peak amplification occurredat half the cut-

oft frequency, so that higher harmonics could exist. The maximum Intensity of pressure - "

ossillations occurred st about M--I. ..

Brandeis [27] studied-the effects of altering the length end aspect ratio of

rectinilular ¢lvittes on the development of the shear layer, lie used an interactive

method which adapu_d the compressibleboundary.layer model for the flow within the t!

cavity. His results showed the location of the stagnation points to be sensitive ?lJ

primarily to span variation. • Shaw et _ [281 modified Rcositer*s formula to improve
iii

_ correlation with measured data for cylindrical and rectangular cavities over the range •

0.4 < M < 1.2. Pathasaraty and Cho [291 developedempirical design equations for

." the dimensions, frequencies, and root-mean-square pressure amplitudes of cylindrical

i .erody,,mtcwhlaUes. "I
";" Bayeel and Stalllngs [30] performed calculations for two dimensions1 eav[tles over
i,

an L/I) range of 6,12, and 16 at a Mech number of 1.5, and compared the

_.._ computational end experimental pressure data. An upwind, finite-volume scheme was

_' usedto solve the complete Navlar-Stokes equationc. Riueta 1311 presented a numerical !

solution For the unsteady flow over a three-dimensiomd cavity at a freeetJ_am Mach

i'. number of 1.5 and Reynolds number of 1.5 million. The self sustained oscillatory ,.

Imotion within the cavity was generated numerically by integration of the time-dependent

compressible three.dimensional Navier-Stokee equations. Comparisons with experimental

data were made In terms of the mean static pressure and overall acoustic sound! .

pressure levels within the cavity.

Baycal, Srinivuan, and Stallinge [321 performed calculations on three-dimeusional

deep and shallow cavities of L/D: 6, and 16 for supersonic flu_. They used the

MacCormack scheme to solve time-dependent complete Navier-Stokee equations. ..

L

o
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7_!__ Comlxlrlzons with experimental data were rode in tsrms of SP,_,(soundpressure level) :

_, and time-averaged pressure coefficients. Compatationel pressure fluctuations were

ti transferred from time domain to frequency domain using the Fourier transformation.
'_IZ ""
_" $uhs and Jordan 1331 used the Chimera scheme to divide the computational

"" domain into two overlapping grid regions, then usedan implicit algorithm to solve the

thin-layer Navier-Stokes equations. Numerical computations were performed at Mash

numbers of 0.74, 0.96 and 1.5, and IJD ratios of 4.5 and 9.9. They have added !

consideration of acoustic suppressiondevice(sawtooth fence) into their code and go_ the J

l
computational sound pressure level results, t

Baysal and Srinivasan [34] presented a computational investigation of subsonic i

and transonic flows past 3-D deep and transitional c_vities. Computational simulations

of these serf induced oscillatory flows have been generated through time-accurate !

solutions of the Reynolds averaged full Navier-Stokes equations, using the explicit

MacCormack scheme. The computational results, which are compared with the

experimental data, include instantaneous and time averaged Flow properties everywhere

in the computational zone. Time series analyses have been performed for the

instantaneous pressure values on the cavity floor. !J

Om [351 conducted a numerical study of cavity-Flow phenomenonon a modified l

Boeing 767. A two-dimensional Navier-$tokas codewas used to simulate the flow field.

The code employed the explicit MacCormack scheme. The investigation was aimed at

examining the unsteadinessof the shear layer and obtaining details of the FlowFleid.

Cavity flow was simulated for two different cavity sizes as well as for two different
ramp shapes. The computational results indicated that the shear layer stabslity depends |

" on the shear layer stability.
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Baysul and 8rinlvasun 136I performed numerical simulations of supersonicturbulent

flows by solvlnif the Iteynolds.avaraled full Navier-Stokesequationsby an implicit flnKe-

volume method. Several examples of' two dimensional solutions are 8ivan to Illustrate .e

the k-_ turbulence model for will and free turbulent shear flows.

'i



" CIIAPTER

,/_- PHYSICAL DESCRIP"'_)N

:; 2.1 Types of' Cavity Flows

A cavity in a flat plate changes the flow field and causes a significant increase

/ in the fluid drag. The flow structure within a rectangular cavity is complex, vortical,

three-dimensional and unsteady. According to the ratio of the cavity length to depth,

_i! the cavity can be classified as deep, transitional and shallow 1131 as illustrated in

_ : Pig.2.1. A deep cavity is one for which IJI) is less than 10, and cavities with L/D
l-

i_.: greater 13 are called shallow. When L/D is between 10 and 13, it is called a transl-
i _'_;

i : tlonal cavity.

.. For a shallow cavity( L/D > 13 ), the flow is likely to reattach on the bottom

' oF the cavity and thus form two reclrcalating regions. Per a deep cavlty(L/D < I0),i-i

_i' a sinirle vortex is obeerved; usually somewhat downstream of the middle of the cavity.

_ Small secondary vortices rotating counter to the main vortex have been observed near

_ the Front comers. In very deep cavities, a second vortex is likely to form below the

• first one, forming a double-celled structure [37]. The resonant mode frequencies or deep

_. eavities have been observed to change considerably with LID,

! :_ The pneral flow structure of a deep cavity is shown in Pig. 2.2. After the initial

i lI expansion of the flow into the cavity, a shear layer is formed between the high-speed



:_"/ leads to mass being pumped in and out at the cavity trailing edge. This effect

i-_'i_' generates forward travelling waves In the cavity that reflect from the front bulkhead ,

_', and become rearward traveling waves. The shear layer is pulled continuously into and ,.":Z" ,

i, then pushed out of"the cavity due to the pressure oscillations inside the cavity. When

/. the cavity pressure is lower than the freestrcam pressure, the shear layer is deflected

i._ downwardspumping massand momentum into the cavity. This ingested mass is slowed
• _j /'

_: down by various dissipative processes within the cavity, therefore increasing the cavity '

• _, I
=_ .," pressure above the frecstream pressure. The shear layer Is then deflected out of the i

: cavity by the excess pressure anti mass is pumped out of the cavity with low mo- ;'i

: mentum. This oscillatory process extracts additional freestrean, momentum during the
"/,,

._)! cycle. A series of sketches which shows the st;,ges of such a cycle are shew_ in
//,
,, ¢

o_. Fig.2.3. The choice of a starting point for the cycle is arbitrary, and it is necessary
r

I

_.,. to review the entire process to understand completely the conditions at the beginning.
• ?_[

• ._;

_[ 2.2 Flow in a Deep Cavity

i. Cavities with L/l) < 10 exhibit open cavity flow structure. In the external flow,
_.'

_o

_: the wave patterns at the leading and trailing edges of the cavity depend on shear layer i
° _: positions. A supersonic flow put a cavity is shown in Fig. 2.4. High pressure ahead _,

_I; of"the rear face within the cavity, venting into the low pressure region downstream of

the front face, cause the shear layer to flow over ti_e cavity. The pressure coefficients

_°°_I! over the cavity floor are slightly positive and t_!attvetl , constant with the exception of
fi

'* a small adverse pressure gradient ahead of the _ r f_co, that is associated with the i

___! shear layer impinging on the outer edge of the rear face. _ _
in Pig. _.4(a), a separated shear layer is shown to approach and flow over the

,_I.! trailing edge. Thereafter, the shear layer deflectsdown, thus exposing the trailing edge i

to the free stream, which causes a shock front to occur at the trailing edge.
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i 81multencously, the downward motion of the shear layer causes a pressure wave to °,

) appear In the corner rej_on of the traillng4dp bulkhead and the floor. This pressure

_1 .. ways moves toward the leading edge. The pressure wave also causes the shear la:ter
i

.i_ above to bend outward Into the tree stream. This outward bend ceu_es s shock front
I

"" to propagate, along with the pressure wave, in the upstream direction.

When the shear layer is sixJve the trailing edp (Pig, 2.4b), there seems to be

no slpUlcsnt external wave system as a downstream wave is arriving, It must be
I

, _ recoiled that the shear layer disturbance associated with this wave moves at a subsonic ,:

speed relative to the external flow.
.... o'

At the leading edge (Fig. 2.4c and d), as an upstream wave approaches the leading

_ edge, the shear layer is kent downward and there is an expansion wave at the edge

as well as the upstream traveling compression wave. After the upstream wave is

reflected to bo_ a do_tr_m traveling wave, the external portion trails away

-:i_ since the downstream wave is subsonic relative to the external flow. At this time,
--o :_

the shear layer is deflected upward and a leading-edp oblique shock occurs. This

i:i sequence of occurrences can be compared with observed radiation pattern to arrive at

_i Fig. 9.5 for supersonic flow..

_! 2.8 _low in a Shallow Cavity
o .

.: The basle flow field in the shallow cavity can he divided into two regions. The

;:_, first half of the flow behaves like the flow over a rearward facing step and the latter

::i half is similar to that of forward facing stop flow, as illustrated in Pig 9..la.

_::} _ In an example of "Breskovmy Separation" (wherein separation occurs on convex

*_,, correctseven through there is s favorable pressure gradient), the ups*ream boundary

_/ • layer is unable neptlato the sharp curnsr and leaves the wall at the corner, splitting

" into two regions: (I) a slow recirculating separated region near the bass, (21 a free

_o

2_
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shear layer that Is swept downstream end roettochea to the cavity floor. /ks the flow "

meets the 90 doIFee turn st the front face, it utldoriloes • rapid expansion. The
, LI

pressure within the Mpsreted lind reclrtulatlon rejlon fells much below the free stream

pressure, This effect and the pressure of the side wall enhance the crossflow which

In turn affects the flow mporstlon characteristics in this regto,_. The separated shear

layer curves dovmward and Impiniles on the cavity floor, The boundary layer 8rows

from the reattachment point up to a certain extent when the ndveree pressuregradient

from the roar face causesseparation close to reor face.

2.4 Unsteadiness and Acoustics of Cavity Flows

There suretwo different type of pressure fluctuations that can occur within cavities,

a random pressure fluctuation and a strong periodic pressure fluctuation. Km_mcheti

[11 found that the periodic pressure fluctuations are accompanied by strong acoustic

radiation from the cavity. The frequency of these pressure fluctuations was found to

increase with airspeed and decrease as the cavity length was increased. In very deep

cavities (L/D : 1 and 2), the pressure fluctuations are mainly periodic but as the

cavity depth is decreased, the fluctuations become random in character. For the shallow

cavity (L/D > 10), the spectrum is smooth and coven a broad band of frequencLee

showing that the preum fluctuations ere random in character. As the depth of the

cavity is increased, peaks occur in the spectra indicating that periodic pressure

fluctuations are superimposedupon the random levels. The random component is seen

tn eavJthl8 wharo LJI) :_4 and the periodic component dominate in cavities where IdD

< 4 [63J. The random component is most intense near the rear wall of the cavity, but

for very shallow cavities a local rallies of intense pressure fluctuations occurswhere the

flow reattaches to the floor of the cavity.
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'_ ! Bllantn and Covert 1211 analysed x model of the excitation meeh#nl_m muggexted

by Rassiter |el. They treated the pleasure fluctuatiqn at the trailing edge as an
tz ./,

',_,:,:_ acoustic monopole. As indicated in Chapter I, the mass addition an4 removal process

,; at the cavity trailing ,dlle Is caused by unsteady motion of the shear layer, This
L;,

-:,,. proeesl producess piston-like effect at the rear bulkhead [Fig, _,6|, which sets up the

_, internal wave structure that force_ the shear layer,
7 '

..... In flow visualization photogr.phs, the shear layer has been observed to roll up
,i

_. into vortices that travel rearward end impinge on the cavity trailing edge, that would

!'*, cause the cavity oscillation mechanism, in supersonic flow experiments, discrete vortices
i

°' are not usually seen, but an amplifying slnumldal motion of the shear layer traveling

_ _ toward the trailing edge is often evident. Perturbations to the shear layer indicate a

_" varying vorticlty distribution along Its length. The apparent traveling wave motion

-/; along the shear layer is a result of ".the dominant amplification of the downstream

_ traveling wave in the cavity, Holler and Bliss [141 proposed that the shear layer

which is subjected to forcing by the cavity internal wave structure would roll up into

_J!, downstream traveling vortices. Thus, the appearance of discrete vortices on the cavity

°_ shear layer is completely ed)nslstent with the oscillation mechanism. They conclude that

_ "vortex shedding" is a manifestation _f the oscillation process, but it is not essential
o .;,

"-,_" to the underlying mechanism. Pig._.:' shows the feedback loop responsible for cavity

o _ oscillations.
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I

" Fig.2.4 (a) and (b) Stages oE trailing edge flow impingement,
(¢) and (d) Leading edge £1ow separation within an

oscillation cycle.
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Chapter 3

MATHEMATICAL MODEL "" i

+i $.1 Governing Equations ,
i

The governing equations are the three-dimensional, time dependent, compressible, , t:

_! complete Navier-Stokes equations in terms of Reynolds averaged variables. These equa-

tions are written in general coordinates and conservative form [38] as 1

""
where U is the vector of conservedvariables,

1 " T
u =y[p,_._,lm]

_ and F, G, H are the lnvisctd flux vectors,
-+" am
.£ ms m ms. *am ,ram

_++' _ or.t2 I_+, (3.2)

!+ !
!_- F= I/J lWUz p, G= r/3 lWU2+_zl_2p , H=I/J l_T3+_)_Sp

+  t�¨�r.u, �a,_.'z+_= +a_:p .,Us. a_.sp
+++,+__ +zz+plu, lzz �ì!´�´�(]s+plus
+_: - . . _
•+-" and ]P, G, H, Ire the viscousflux vectors,

;=;;: 0 0

_i 13.3)

=.+ Gv= l/J ate,2+. Fv= l/J ake.'_
+._., +

-+ +,,+,:'(=,,,+,,',,,:,+,,,',+.-m} +,,+'1.,,,,,+_,,:,+,,m,s-o.,,)
+ L+

.... ,+<., ,+" °.. .,+ .... _ .... ................................................ ..+.................. +_..+_+.........++ ++=+.++++_:.++._+__++
'"': _ + '" _" + _' % + o ,,..+ D+ + + : + +1+1--+ 1: _--_+ _+ ..... + --
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' 0

,* • e

':: Hv = l/l o_3'_,,2

x_

_: b* m

¢_ !

=4 The eontravartant velocity components( U Us U_ I are defined by

i:_ Uz=a_gZu d�Œ�ä�Zv+asg'w,
_: 13.41

U2m()l I1+ w,

e

:Y The stress and heat flux terms used In the equationsabove are given by.%

JM e

Z_: + ,

_ Tk$ m -- + ,

.i

where k, n, and m are dummy variables.

,, And 6, : 6/6x, 6s : 6/6y, 6, : _/_z l_s-_ _t q md_' _

: The total enerffy, E, and the lnte_eml enerl_, e, are defined as follows,

K : e + 1/21ul + v_ + w_ ) 13.61

1S.7)_-,: • = --,

.......
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The perfect ps law I

p : (y- I) e :pRT (38)

and Sutherland's laminar viscosity law have been used to complete the system of

equations. For turbulent flow, the total viscosity p, is defined as the sum of molecular
• °

J
viscosity (p,) and the turbulent eddy viscosity (pt). An algebraic turbulent model is used b.

to calculate the eddy viscosity.

•_ 3.2 Turbulence Model

The effect of turbulence is accountedfor through the conceptsof an eddy viscosity,

Pt' en_ eddy conductivity. In the momentum equaUons,the molecular viscosity, pt, isreplaced by an effective viscosity, p.:

_i ". = " + ", = " (i + ,/,) (s.s)
_ The study of the turbulent flow and adequate modeling of Reynolds stresses (here

i: it will be referred to as turbulence modeling) are current subjects of research. They

i- have not yet been fully understood, and up to now, we still cannot Find a perfect and

efficient model. The. modeling of turbulence is complicated by the fact that several
i

length scales exist which control the generation, transport and the dissipation of

turbulent kinetic energy. A simple empirical model that can estimate compressible

turbulent boundary layers with separated flow has been selected l'or this study. This

' bas two-layer algebraic turbulence model was proposed by Cebeci |$91. It is based on

,.|+.

i-_+_ the Boussinesqapproximation of modeling the general Reynolds stresses by an eddy

viscosity, similar to molecular viscosity. This model was later n_dified by Baldwin and
l--i

_* Lomax 1401.

=, The mixing length model employed in the Baldwln-l_max model divides the shear
: T.

_ layer into an Inner and outer rel_ton, and Is patterned after a method developed for

_"+. attached boundary layers by Cel_,ci 1391. It is a two+layer algebraic eddy viscosity

_ .... +_-+ _ _._+_._-_.............._:, "'r_ ___ ._ ....... _"+,-_--_•+" :r--__'_++++__....: "?_
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,_ The outer forn,ulgtion can be used in wakes es well as in attached and separated 'l

boundary layers. The distribution or vorttcity is used to _letermine length scales to that

,' the necessity for finding the outer edge of the boundary layer (or wakel is removed.

_i'; The Inner a_d the outer eddy viscosity models are combined to form the turbulent

:*. eddy viscosityp, in the following manner. First, profiles of p, and p, are obtained on

:_. each coordinate line emanating from the wall. The first point near the wall at which

o_'i p, exceeds po is denov_l the "cros_over point'. The turbulent eddy viscosity Pt is thenT

_i} equal to p, for all points between the wall and the cross.over point, and it is equal to ?

_ p. for all points above and including the cross-over point.
o .!

_: Some modifications have been done to the model for all the points within and

,,_io close to the cavity. These are IDegani-Schi/Tmodifications, the multiple-wall modification,_,_

-_° and the wake modifications.

3.2.1 Degani-SchiiT modifications 141J

_.,;i The m_jor difficulty encountered in applying the Baldwin-Lomax turbulence model

_2!' to vortical flows is the evaluation of the length settle, Yu_' and in turn determining

_,/: (p?._, for boundary-layer profiles in the cross flow separation r_iOon. In Fig 3.1a, a

. general P'(y) curve is shown. If there is a strong overlying vortex, then P(y) curve may

switch to Pig. 3.1b. In addition to a local peak in P(yl in the attached boundary layer . i

at y : a, the overlying vortex structure causes a larger peak in F'(yl at y : b. The I

°"I. choiceof the peak at y : b results in a value of Pu_. and, In turn, s value of Ip?..L., i

_ _' which is much too high. Thus, in general, the computed eddy-viscosity coefficient in i

_ the cross Flow separation region behind the primary separation point will be too high. " i

°°_o, This will cause the details of the computed flow to be distorted or washed out. : i

_ To eliminate these difficulties we have modified our implementation of the ,

_. turbulence model. At each computational coordinate the codesearchesoutward, sweeping ,

_. ;.:_
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":i from wall to free stream, in order to find the first poak in F{y), and then cut off the

! search when the peak tl reached. To prevent the selection of erroneous peaks which _,

;_ . might be caused by a nonsmoothbehav|o, in V(y), s peak is consideredto have been

found when the value of F(y) drops to 90qb of the local maximum value.
t •

For most cases, in the cross flow separation region, tho two peaks in Y(y) are

spaced far enough apart that the logic described above will select the first peak.

_.t Ilowever, this is not true in the vicinity of the primary separation and immediately :

' r following the secondary separation Under these conditions the code would choose a I
I

value of Yu,, near the top edge or the cavity. Consequently, a cutoff distance is

specified in terms of Y,uufrom the previous value, i.e.,

Y_.s = C Y.uunw._,_' where C is a constant chosen equal to 1.5.

3.2.2 Multiple-wall ModUTcations14)

The second modification is the inclusion of mulOple-wall off`acts for points in the

prox/mity of concave edges and corners. Eddy viscosity values were computed using the

vertical walls (FF, RF, SW) for such points, in addition to computing eddy viscosity

values using the horizontal walls (FPI, P, FP2, SFP) for all the points in the

computation zone. q_um an off`actlve eddy viscosity was computed through inverse

averaging. For example, p_ was computod as follows for a point neer the corner of FF,

SW and F:

P'= )F-'(y'% " "(Y)ee+(Y )m
%

" which increased the influence of the wall with the lowest (y,) value•
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; ,;1
$.2.$ _,_ake.model ModJNcstions

The abrupt chanlge in the e,kly viscosity coefficient From the bound.ry layer to

the wake is approximated usin8 the concept of s relaxation eddy viscosity model to ..

represent the d;fferent lanath scales in the problem,

For the cavity, the eddy viscosity is calculated by

P, : P,, + (Pu " P-) II - exp (.x/lO)i (3.18)
/,

where

P. : the value at the upstream lip,

Pu : Baldwin-Lomax eddy viscosity value,

: instantaneous boundary layer thickness at upstream lip, i

x : strearnwise distance from the corner.

This modification is known as the relaxation model, which has been shown to

work well f(Jr other numerical calculations [421. It accounts for the history effects of

the fluid. The eddy viscosity (p,) has been set to zero at all the solid surfaces.

$.S Initial and Boundary Conditions

iI

in computational fluid dynamics, the initial conditions usually correspond to a real _J

situation for a transient problem. In practice, initial conditions are obtained from

experiments, empirical relations, approximate theories, or previous computational results.

An improper initial guess may result in solution failure. An important requirement for

the initial condition is that they should be physically as close as possible to the actual

nature of the flow field.

A reasonable approachhas been to initialize the entire Flow field above the cavity

with the inflow conditions. Within the cavity region, depending on the type of cavity,

the initial conditions are different. In deep cavities, the flow within the cavity is .

,!
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,,, subsonicwhich was knewn from experimental observations. Therefore the velocity inside ',

? the cavity his been orbitrerily specifiedas 10q_of ill free stream v.lue In shallow

-_;i.- cavities, the shear layer impinges on the cavity floor. A_ a result, an approximate

" velocity profile close to the inflow velocity profile has been specified within the cavity.
_' t 8

_"" The pressure and temperature within the cavity has been set to the free stream value.
./

.: Correct boundury.c0ndittons are essential to the successof numerical calculations,

.. Six faces require attention in the specificationof boundary conditions. On solid surfaces, ;,

: a no-slip boundary conditionhas been used so that all the velocity vectors vanish In _;'P-'il
t,

i:'.i the test cases, the wall has been consideredto be adiabatic. The pressure st the solid t'

,':: surfaces has been obtained by a zero-order extrapolation from the interior point value

• _. of pressure in a direction normal to the wall. The density is obtained from the state

. equation.

u = v = w = 0, 6p/6n : 0, 6T/6n : 0. 13.191
, /i

_._ In the case of supersonic in flow (except in the subsonic portion of the boundary

N'_':: layer close to the walll, all flow characteristics point from the outside towarde the

inside of the computaUonal domain. Therefore, all elements of the primiUve variables

•:!_ (vector U in Eq. 3.11 have been specified by a profile generated using the two-

.:.. dimensional compressible boundary-layer equation5 for perfect-los flows lthe governing

" equations are solved by an itorative three-polar implicit ;_nito-dlfference procedure) [43].

_; In the subsonicand transonic inflow, all flow eharectoristles, except one, point from

outside towards the inside of the computational domain. Therefore, only the variables

u, v, w, and T at the inflow are specified. The pressure has been extrapolated from

L the computatl,_nal domain, to allow for the information to be propagated upstream.

The pressure within the boundary layer is maintained at the value of boundary layer
o-

edge.

_ U : Ub _._j, v : Vh.Lj.,eu,, w : 0, T : Ttb.L_,,, 13.201 i

i i

i _-
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supersonic inflow: P - P,

subsonicinflow: P_j = Ps, (for j ab.Jvethe boundary, layer),

P,j = P (for J within the boundary layer),

P.: value or pressure at the bo,:ndery layer edge,

_i When the outflow field is supersonic,the flow characteristics point from the inside ' " _'

of the computational domain to outside. Therefore, all variables at the outflow can be
I

determined from the interior flo_ solution by a zero-order extrupolaUon. When the |]_

?
outflow field is subsonic, since there is only one incoming characteristic, only one a, aly-

tic boundary condition is required. Therefore, we only specify static pressure, and other I

L

variables are obtained by a zero_rder extrapolation,

6u/6s = O. 6v/6s = O, 6w16s= O. 6TI6s = 0. (3.21)

6P/bs = O, (supm3onic outflow)

P._ = Pu-_ w.-_' (subsonic outflow).

where s indicates the streamwlze coordinate.

The far field refers to the flow field at a distance away from the body which is

greater "than the reference length of the cavity. The boundary conditions are specified

by zero-order extrapolation from inside-the computational domain for out'low, and as

free stream conditions for inflow. The pressure values are assumed to be free stream

at this boundary.
!

6u/6n = O, 6v/6n = O, 6w16n = O, (3.22) +

6T/6n = O, P = P. i

On the symmetry plane, the following boundary conditions are used: 1

6u/6n = 0, 6v/6n : 0. w : -w, (3.23) ;

6T/6n = O, 6P16n = 0. +i
; *

: -7

i-

1 , °
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' Chapter 4

i NUMERICAL PROCEDURE .. _'

ii b,

A schematic of a cavity mc_lel is shown In Pig. 4.1a. It has been found from
• I

Ii experimental observations, that cavity flows are almost symmetric about the cavity ,,
....I; centerplane (streamwise dirsction). In order to reduce the computational time and

_* memory a half span cavity has been modeled. One of the models is shown in Fig. |

....... 4.1b.

The next step is the grid generation, which depends upon the flow, the geometric

ii configuration, computational resources, the required accuracy of the solution, the physical

dimensions, and the boundary layer thickness. In the present analysis, three-dlmen-

sional cartesian grids are used because of the geometry. Stretched grids are needed in

all of the three directions, so that the entire computational domain can be covered with

"- a reasonable number of grid points. In regions which experience large gradients of the

flow properties, such as, close to the solid walls, and shear layer re_o_, the grid points

are clustered.

' The grids are generated algebraically. The cavity is divided into several zones.

An exponential stretching function given below is used to cluster the grids in each zoos:

• [ x. ]e_ 14.1)
y=y=. (¢R_ilr_)-I k)-l) "

•- where, y... is the maximum value of y in the computational zone. The value of k is

chosen proportional to the clustering needed. The minimum spatial step size Is of the
,!

order 104D, and the maximum cell aspect ratio is around I00.
_g

' 3_ ,

i

J
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4.1 Explicit, MacCormack, FinJte.I)ifferenco Scheme (EMFU)

The MacCormack finite-difference method i44J is a variation of the two-step I_x-

• WendrofT scheme. This scheme is secondorder accurate in time and space. This
t

explicit method has restrictions on the time step of integration as given by Courant-

Preidrichs-Lewy 1381. It has been used to solve Euler and Navier-Stokes equations for

numerous practical flow situations, including laminar and turbulent boundary layer

,i
shock interaction, i

t_

The predictor-correcter explicit algorithm is summarized below in general coor- _'i

dinates.

i1Predictor:

Ui._k= U_/.k+ AU_i.t

Corrector:

_'_ _' _'T V_Hj._'_k] (4.3)AU_k=-At [ V_F_k. V_,O_j.k +

Ui.l.k = Ui.l._ + Ui.l,k

where6_, Aq, A;are forward spatial differences, and V_, V_, V_ are backward differences.

The coordinate transformation Is chosen such that A_ = A_ = A_ : 1.0. This

two step process consists of evalustins spatial derivatives by one-stdeddifferences taken

in opposite directions on alternate steps. Although the one-sided differences are first-
i.

_rder accurate, the combined predicter-corrector step jives the second order accuracy.

• Because of the complexity of the compressible Navier-Stokes equations, tt is not

pnsslL_leto obtain a closed form stability expression for _e scheme. The most success- ,.

0
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• /_ study the ompIlflcution of the Fourier componentsof the solution by the difference i"-}2] meth(xl applled to the linearised set. ""

__: For stability, the time step is restricted by the CFL (Courant, Vriedrichs, and !

;_. |,ewy) condition given by )'

:_'!" CFL = t _,m 14.41

.:_, At_ o _CFL)
"_ I +2/R 'i....-:" eA
<_. 'I

_i,: where )_ m, is the maximum eigenvalue of the set of Jacobian matrices, O is the safety
:'.,

_¢" factor 1w.0.91, and Re is the minimum mesh Reynolds number given by:

_. Rea= rain(Re_, Rea_,Re,..)

a?
,_ . _v_ .

g "

Re,.=

:;: The linear stability analysis imposes a restriction on the time step in each direction

_ ((_,_, a,_ _;1.
:--,?

:'-* f_,+ v_,+ wq,l �avl_,+ _,+ _,;

: <, ,4 d+ d)
.:- The global time step is determined as At=rob ,_, •

,%

UUUUUUU/ /OL)_3_
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For practical computations, especially in the region of large gradients, such .s

shocks, strong vortices, arid separation, the solution exhibits oscilla_,c..,. These oscil.

+
.. fattens sometimes wlll cause the numerical code to "fail". In order to suppress the

oscillations, we add damping term known as "artificial viscosity" into the differenced
• 4

governing equation. The fourth order damping term devised by MacCornmck and t

Baldwin [45I, is given below:

fl wl �8/

where 0 <Sp < 0.5 and 0 <$_ < 0.5.

The features of the numerical algorithm have been embodied in a solver written

in FOIt'PRAN 200 language using 64-bit arithmetic specifically for the CYBER-205

computer [46|. The veetorization executes in _ planes. Approximately 3.25 million

words of memory is required for grid points. The mean data processing rate is 5x10,

opus/time step/grid point on the CYBER-205 computer of NASA Langley Research Cen-

ter.

i 4.2 Implicit Upwind, Finite-Volume Scheme (IUFV)

+ The finite volume discretization is another means of developing difference i

'+ approximations to partial differential equations. It is in this form that the equations I

" + 00000001-TSD06
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express rates of chaniJe in • finite volume in terms of th_ resultant fluxes throuah the

boundary of the volume. These equations provide averalre values of the solution over

the volume. The advantage of the integral form is thut it remains valid in the presence "

of discontinuities in t_e flow, such as • shock or 8 separation. The integral form

(stationary control volume) of"the governing equations is _

(4.8)

_s s S,U.dV+t t._.;_ -0.
t _

me 4,0

where_ = t(v-P),(o-a),(.-.)J and;-n_ _isa unitnormalvector i:
pointing outward from the surface S, bounding the volume V. We can use the

divergence theorem to change the surface integral to a volume integral

(4.9)
ssS,_-.dV_"+ J'sJ_V._dV=0.

Ot

A_sumins continuity of the integrand in the above equation, the difYerential conservation

law form of the governing equetiol,s can be written as

For generality, the governing equations are put into nondimeusional form. We use the

cavity depth as the roferonco length _"

..:-..o.--,_,.pdk. 8. p.L.
t
i

Wm T" mtim o vmV--V_ t t "

8. 80 _. T. P t

The finite volume method is adopted to handle arbitrary configurations since the

method can more ensJly treat complicated grid structure than finite difference formula-
4.

tions. We can discretise the flow field into a set of ordered hezailonsl cells (volumes) _'

and apply governinil equationsto each volume directly. Thus, a semi-discrete represen- r
4

i@

i '
•
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I i'.. tation of 8overnlng equation can be written as

o. ,,,., 's !0
l,l,k !

• i. hk

or, in more detail ' t

) (F'F,I,.I.,,'IF'F.),._.,,_O-O,),_,-(O-O,),,p ,,.,3) ,

{ {H-H,ks._-IH- I_ ),t,._ ! ,i

. where, for convenience

A_ =11t.!-Tli.L= 1 ,
2

=_ and by virtue of the lntelr81 representation,

: s ] '"'",_,, U _k- U(g,_,_,t)o'V_j.k "
:!:

.!

;': U is regarded 8s a call average value rather than a polntwtse value at the cell center.

o!; For solving the Navier-Stokes equations, th_ theory of characteristics is crucial

-_'°l in determining the directions of the sllPml propaption, the information gained from

_: eha_..etaristtc theory. Recently, much Interest has been generated in the development

_i I of numerical methods that model the underlylns physics, as dictated by characteristic

theory, at each point. Some of the methods include flint-vector splitting, and flux- _,

•. difference splitting. These methods cam be classified U upwind methods and have the T

__] advantage of belnff naturally dissipative. The advantages of upwind methods over !
t

central difference techniques are h enhance stability properties, and 2: ellmJnata iI

explicitly artificial viscosity or dampln8 terms.

O000000_-TSDO8
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Since the ploneqrinil work of 81milerand Warming[481 in the early 1980s, the 't

upwind method nu Mown rapidly. The schemesused _nhere are based on the method
c_

developed by Beam and Warmin8 [49,50i. The scheme for solvin8 the compressible

Nsvier-SWkes equations belongs to the same class of ADI methods developed by

McDonald and Briley [641. _

After Eulor implicit time lntelpration and Ilnearlzation, the 8overnin8 equationo
1

can be expressedin cl_erenee form as: ii

..[ o.o,1+al.-,J]"..R"

These equations are very difficult to solve due to the I_rae banded mtrlx. The leR

hand side requires an inversion of a very l_,_e matrix. There are a number of
• !

approximate factori_tions to split the resulting Israe banded block matrix equation into i
i

a sequenceof easily solvableequations. We nse a three factor block trldlagonul scheme _'
,1

that is tully veetorizable in which the implicit operator is factored such that each

directional factor contains the Jacoblansassociatedwith that direction only. Che three

factor scheme can be written as

JAr
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The solution only requires block tri.diagonal inversions and is followed by the update

step U,,I : U' +_U.

. The essenceof flux difference splitting techniques 151J is the solution of local

Rlemann problemsstemming from the considerationof piecewise uniform stutes between J
- • s ';,,

cell interfaces and an initial data line. Roe 1521proposeda method of exploiting the

fact that the Riamann solution for any set of linear conservation laws can be easily

computed. /toe's idea was to obtain an exact solution of the Riemann problem for the I_

following linear hyperbolic system, rather than using an approximate solution to the ?i]'I

exact equation. This system, is approximated by

_tU I, laU=n (4.19) ',+[^]|uL,_,,_ ..

Vor flux terms, a monotone upstream centered scheme for conservation laws(MUSCL)

approach is used. For example, in the _ direction, the spatial derivatives are written

conservatively as a flux balance across a cell as-

•
where the interface flux i_ constructedas.

q,, and q denotes state variables on cell inter/aces det_tminated from upwind biased

interpolations of the primitive variables.

(4.22)

-r(,.,)s. t '

g 14w.

• )qi+-}=qt" | I-EIA.+( 1+t)_'-] .
• 1,*.1 tJ

t

iA •
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rewrite the Jacobian metric

% .^- :T(^ ,'"_'t

where

^i = A___. 14.251
2

are diagonal matrices formed from the eilrenvalues ofA, i.e.

A._(_,, _, _,,x,._). 14.,e

j
q

x,.1_'*-;11_1, " i
J

_,, (_,-;)Jv_ "j •

I.
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The contrava, t velocity norms! to the cell interface is
li

w_v 14.271

and the " Indicate• • Roe overused variabie1531

•' In order to develop the solution usin8 c_nsiderably less computer time, each

direction of the spatial lector is approximated separately with • diulonal lnveruion

separately, such as

* aF..-1or, i u + 11'r"au" (42s)
J

both side are then multiplied by T z, and hence the l-sweep then becomes:

I' • I'''"• ""
Due to the repeated eipnvalues (_l = )t s = )t , ), only three scalar tridis'gonal LU

decompositions are required for each line. The tridial_onal matrix can be written as

- _̂-,.+.o,.,)I,-',_'l,., �m^(,,.,_._,)_^-,(,,.+.o,I,-',_,,,_,
(_ 1_,-'.).,;._+^ ,Ui �IAU l+l = .

The meWic torn= M and state variables U are evaluJLtmiat cell centers. AFter the

initialisation and development oJ" the flow, the dlaironnl inversions a+'e turned off and

more ec_arate block inversions are turned on.

The Van Leer type flux-vector splittin8 method [54,551 distinguishes between the

influence of Forward a_ld backward moving particles in this model, the interaction

: between IMudcles is done through mixing of a pseudo-particlejoin8 In and out of each + ,

ceil according to • liven velocity distrib_ltion. +_._

l

•
ira!
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8ince the flux vectors are homogeneousfunction_ of delree one In U, they are 4

expressedin terms of their Jacoblu0,matrices. Using u similarity transformation allows

Jacoblan matrices to be written a6 156, 57, 301:

F-r^lu-[T^T"lU. .a,, .
t

The matrix is a diagonal matrix composedor the eipnvalues of A and is given by

elm m

_,1 0 0 0 0 (4.32) }
0 _ 0 0 0

^ = 0 0 _3 0 0 _'

0 0 0 _ 0

0 0 0 0 _
ms ms

where

_,l,_s=U=_u+_v+_w , (4.33)

_,=u+lv_la ,

_,-u-I_:1. •
The eigenvalues can be decomposedinto nonnegativeand nonpositivecomponents

where

_._,._ 14.s.2 "

4, -- I.

Similarly, the aigenvalue matrix can be decomposedinto ^ =^ + A , where A is

made up of nonegative contributions of ^ and ^" Is eo_slJructedof the nonposltive ." !

contributions of A This splitting of the elgenvalue watrl_., combined with equation
f

14.71allows the flux vector to be rewritten as:

F.T(̂ '+̂-IT"u-(_'+_")u-P'.," . .36_

00000001-TSD13
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The flux vector has three distinct eigenvaluessad can therefore be rewritten as a sun;.

' of three eubvectors,ss following:

The forward end backwilrd flux vectors F. and I_, are formed by inserting )_° = A.*

, and )_ : _. respectively.

i For the purposeof splitting the flux vector, approximate faetorizntlon Is used to

solve the vector flux split equation, which in delta form, is the followtnil:
i. )

i I+AtV_A;+AtA_;A;-At x I+AtVqB_ +AtAqB;-At (4.37)

i.,• x l+AtVgC +AtAt;Ct-Atag &UI:-AtlP, HS) "

i_: = aO . aH :

_' N ,,jli)F,I _"0,) .jlaH, I "/:: ' IJ_/' M;.; _-_, K, I_'_l' L

;' AU:U "*l -U"

_, RHS-A_F +A_F Ä�¼�+AnO+A;H +A;H - F+ G+ H
!, /J

The split flux vector in the above equations is Implemented u the flux nero. n

-__, ceil, correepondinilto MUSCL type dUYerencing:

,-,i The notation F.(U-).us denotes the forward flux evaluated using the metrte terms at '

_!_" the cell interface (l+t) and the conservedstate variables on the upwind side of the _-

' ;4
!,e

/,

Y.I

O0000001-T$D14



v

:: 44 , _lI
interface, obtained by ,_ fully upwind sscond-order state variable interpolation:

'" U,, ,,_ = |.§U - 0.6U, s' 14.40)
i

::i U,,, = I.SU,, i - 0.SU,,_.

All the computational cells are advanced st equal time steps (time-accurate calculations

i,il_ require global time steppingl corre_.pondlngto a spec*_r.dCFL number given by;,C-

" {' 0 o,]} """c.At ',u!+Ivl+lwl+a
,v

_'.ii After that, the conserved variables are updated
-_',I: U,+t = U, +AU (4.421

";i!}i The features of the numerical algorithm have been embodied in a solver written i

,.e using FORTRAN 77 with 64-bit arithmetic specifically l'or the Cray-2 computer.

Approximately I0 million words of memory are required for IS0,000 grid points. The *'

mean date processing rate is 6x10_ cpm_tlme step/grid point on Cray-2 of NASA lmngley

Research _nt_r.

• 4.3 Computational Flow Visualization

The visualization of. the solution through graphics ie an important area in i

tcomputational fluid dynamics. This is essential since the amount of data generated by

solving the equations is In the order of millions. Details of flow visualization have !

been addressed In 1551. The PLOT3D 1591 is a popular graphin application program

to create and intarltctively view flow field solutions. It is an application program in

that it deals specially with computational fluid dynamics grid and data. In the current

research, this program has been used extensively to represent the large amounts of data

pictorially. The contours of pressure, density, tempsra_ure, and Math number have been

plotted.
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_':_; 4.4 Time Series Analysis

'i_ In the current study two characteristic times have been defined for convenience.

_. The first characteristic ttmc, t+l, is defined as the time required for a fluid particle
p,

---"_ traveling at free stream velocity to traverse the length of the cavity. This parameter j

_ is useful in determining the computational time required to get past the non-physical

__': initialization of the flow in the computational domain.
L :

+'+ t, = LJU :i
--,;' +. ¢|

++ ill
....+ But the acmtstic waves propagate within the cavity at local sound speed, so we can

define a secor, d characteristic time as t:i

_ t = L/a = Mtcl

+:' where a. is the local sound speed. For reasons of economics, large time steps are

/:_ desirable for the computations, ilowever, if this time step is larger than t_, then we

cannot capture the pressure fluctuations. Beside the numerical stability, therefore, there
,c

is another restriction to the numerical time step. We express that using the frequency

fore> r.....w-
,+" snd from th_ definition f = liT,

+ =:> < t
: tcrD _.... nm,.m..

_,' => tcr_ < minl t l, t, )

_, A lot of time dependent data (pressure _history) is obtained in the time domain.

_ A widely used method is to transform this data from the time domain to the frequency

. domain using Fourier transforms. Compared with other methods, the frequency domain

i_' representation is much easier to understand and contains the information of harmonic ;

+. resonance frequency directly.

i! The definition of Fourier tra, mformation 161J is given as following: ,

++: F(w}. t(dexpI-tw,}dt . (4.43)

+,/ 1.
+.

i

t
,f+

i+.

"_.-_ (4 ";"";++-+_"" m 0 :Jl + P? + + _t+ "__ o.V +, "_
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i. There are two fluctuation mechanisms that occur in a cavity; a stron8 periodic

1 fluctuation, and 8 random fluctuation. Since we cannot predict the period Of a random

fluctuation, we rewrite equation 14.431 as

• Flw}= fWexpl4valdt. (4.44) ..

i_l The acoustic pressure distributions are represented as overall sound pressure level, tSPL, in decibels which is defined its

SPLltl=lOlog _2 " t
• p, i

where the value of reference pressure, P, is 2x10¢ Pascais. Then time distributions
4

of SPL are transformed into frequency distributions using Fourier transformations for

cyclic but non-periodic oscillations 1601,

7 s, "SPL(f}= 'SPLltlcap_-2xftildt .

_, (4.46)

J where f is in Hertz (Hz).

-_ Computed sound pressure levels are corrected by subtracting

|O|og._(fc_ N" ) (4.4"/)

J to account for the disparity between the computational band width increment, and the

experimental band width increment.
"i
I
l

7

I .

1. " t
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• Chapter 6

• _ RESULTS AND DISCUSSION

._ The computational test cases have been chosen in order to compare the flow ii t

structures with different flow conditions (with and without yaw angle), and the _ ?

computational results of different schemes. Four cases have been modeled and analyzed..

i_: Case l: Maeh:2.16, L/D:3.0, yaw:0o, EMPD Scheme; !

_

_,, Case 2: Maeh=2.16, L/D=3.0, yaw:46,, EMFD Scheme; ),

• Case 3: Mach=l.6S, L/D:6.7, yaw:0,, EMPD Scheme;
t

Case 4: Mach=l.68, L/D=6.7, yaw=0, IUFV Scheme.

One of the reasons for choosing these test cases has been the availability of 4
I
#

experimental data. Also, it is intended to demonstrate the capability of the numerical •

schemes to model the complicated flow features in different flow regions. The flow

conditions and _vity specifications chosen for the four test cases are given in Table 5.I.
4'

The grid slzes used to represont a field size enclosing each cavity are shown in Table

5.2. The field dimensions and cavity dimensions are also shown in the X, Y, and Z

directions for the test cases.

Since the flows being simulated are unsteady, global time stepping has been used

in ord6r to maintain the time accuracy. In offer to stabilize .the initial numerical

transients, the time step has been gradually increased by increasing the Courant

" number form 0.01 to 0.7. Shown in Table 5.3 are the characteristic time and the
IF.

, computational schemes, the number of characteristic times over which each of the cases

has been run, and the amount of CPU (Central Processing Unit) hours used for etch

case. 49

t

................................_ i, _i _._ _,..z'........_ o -'_,_,_ _,.........._*_-_ ., ._..o _ "_ -____-_,.........._ _-_d.
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i_I Presented in the fli;urse tilustraUng these cases are the distributions of velocity
..._l vectors, density, Msch number, temperature, pressureand skin friction coefficientsinside

_ the cavity. In order to show the three-dimensional effects, the qow variables are •

plotted at different planes. In this study, these quantities ere plotted in the !_

, streamwise, cross flow, and horizontal planes. Shown in fillures 5.In, b and e are

representative diagrams of streamwiss, cross flow, and horizontal planes.

The instantaneous s',reamlLne plots and the limiting streamline plots, which _Li_
:'_ approximato the oil flow patterns in experiments, are also shown. The limiting i,'

,_ streamline plots on the cavity floor have been obtained by limiting the particle traces

:_- to a plane just above the floor. In addition, to demeMtrale the transient nature of the J

!_ cavity flow, Ume series onniysts of the pressure histories at certain locations on the ;

_.. floor and lip are displayed. The computational results have been restricted to several !

ehm_ctertstic times.

5.1 Case 1: Ma_.h=S.16, LJD=3, yaw=0O, EMI,'D Scheme

Tile entire velocity field over the cavity conterplane is shown in Fig. 5.2. Since

the flow is time dependent, only a .typical instantaneous velocity distribution is

presented. The most obvious feature is that the shear layer bridges the cavity opening

u expected of deep cavities. The shear layer sometimes dips into the cavity and

sometimes it deflects out of the cavity. The flowfleld within the cavity is subsonic.

Experimental investigations also recorded an identical observation 1141. An attached

turbulent boundary layer upsr_re_mof the cavity separates st the lip to form a free

shear layer over the cavity and finally rea_s downstream of the cavity. Two

distinct vortices sue seen within the cavity. The interaction of the shear layer with t,
i

the rear face causes a strong vo_,ez structure close to the rear face. The vortex

structure close to the G_mt face is relatively weak. in addition to the main vortex
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structures. For clarity, only every other velocity point in the streemwJsedirection has

been plotted in all the velocity vector plots.
i

. in order to demonstrate the unsteady and three.dimensional behavior of the flow,

the velocity vectors w|thin the cavity at different sponwbe planes have been plotted in

! Pig.5.$ at two instants of time (t I : 40.4 end t. : 55.76). These velocity vectors are !

presentedat four streamwise planes, moving from the plane of symmetry towards this

sidewall, (Z_V = 0.1527, 0.2728, 0.36/2, and 0.4415). It can be seen that the flow I

structure changes from one instant to the next. In addition to the variation with time, _J

the sponwise variation is evident. The vortex structures near the front and rear faces j

appear to be warped as the side wall is approached, i

The instantaneous (t : 55.76) streamwise density contours at four planes (Z/W

: 0.1527, 0.2728, 0.3672, and 0.4416) are displayed in Pig 6.4a. The shear layer is t
t

evident from these contours. The value of density at the front face region is low and

progressively increases to a high value towards the rear face region. The reason for

the increase in density at the rear face region is the interaction of the shear layer

with the rear face sad the compression of the fluid. This compression cauees a free

: stream shock wave close to the rear face. Also, from Mach rmmber contours, we can

see the shear layer deflects out into the rear fnce region, end causes a shock wave in

: the troestroam. The static tampomtoro within the cavity is slightly higher than the

htream value, and the density in the cavity changes from a low value at the wall

lind lnmmJses progressively towards the cavity opening until it reaches the freestream

value. The density decreases in msi_tude from the plane of"symmetry towards the

sidewall. The streamwise pressure and Math number contours are shown in Pig. 6.4b

and 6.4e, respectively. The same trends observed in the density contours are seen in
; .o

the pressure contours. The pressure contours exhibit shock structure weakening in

; magnitude from the plane of symmetry towards the sidewall, t-,i

. I

,1
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. The instantaneous streamline plots generated with "numerical dye injection" at ;
t

+o;J different vertical planes, stretching from the floor vertically up to the sheer leyer region !
<,_.. I Ij

" 'i+ are displayed in Pig. 6.5a. The three-dimensional view of the instantaneous streamline " _

§_i_ within the cavity ere depicted here. The flow inside the cavity consistsof a large ,. i

'_ counterclockwiserotating vortex, and 8 smaller clockwise rotating vortex. We can get
t

.io.7

_it the details of the flow structure from Fig. 5.5a and Fig. 5.5b.
;/

=_,L-1 The instantaneousvelocity vectors at three crosssectional plenes (X/L : 0.0679, I

=' _ 0.6852, 0.9571) and two instants of time (t s : 40.4, 55.76) are shown in Pig. 5.6. It (

is seen that the flow structure is not only difl_erentat various cross sectionsbu_ also

* varying with time. The cross flow velocity vectors (at t i : 55.76) at X/l, : 0.0679, i

_ show the flow on the SFP to be towards the cavity-forming one bigger clockwise ;

_ rotating vortex, and a smiler counter rotating vortex. The air flow is from the side (
_ fiat plate into cavity. The veidcity vectors at X/L : 0.6882, and t_ : 55.75 show the

+_: fluid is being pumped out from the cavity towards the side fiat plate.

i!+_ The instantaneous limiting streamline patterns on the cavity floor are displayed +

in Fig. 5.7a. Since the limiting streamlipe plots do not indicate the direction of the

• stresses, two components of the shqar stress contours on the cavity floor ( T and _,1

,._ are plotted (Pig. 5.7b), and shear stress vectors at the same instant of' time as Fig. ,

6.7c. The main flow interacts at the rear face and reattaches on the floor close to the

_- rear face (Fig. 5.7a). The reattached flow moves in the direction of the front face.

Towards the Front face of the cavity, the limiting streamlines converse into • line of

. °_' separation. There are several nodes and saddle paints. This is an instantaneous open

type separation. In addition to the main separation, there is secondary closed :

_:i separation on Front face. This separatedflow is mn to reattach on the floor very close

_=_'_-" to the front face. in addition to the streamwise reattachmont, a cross flow re-

**' attachment of the flow it seen close to the sidewall. Close to the front face the
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jz,_ o velc_lW componentsarc small, therefore, the shear stress vectors ure small. Since the 't_

,."_ shear layer interacts with the rear face, the mapttude or the velocity componentsare

- ,/:,. ,. larger and therefore the shear stress vectors are larger. Due to the Fluid particles ere

': !i drawn towards the sidewall in the rear region of cavigy, the low pressure resdontoward

.,_ the sidewall. The shear stress contours are shown in Pig. 6.To. _

,/,,,_ The mean pressure coemcisnt distribution along the cavity centarline and rear

.,.',., face, obtained computationally end experimentally II$J, jure shown in Yills. 5.8s through |1

_.._,_,., 6.8f. The specific locations are: (al fiat plate ahead of the cavity (YPII, (b) fiat plate

!_i_i downs_oam of the cavity (PP2I, 1c1 front lace of the cavity IFFI, (dl cavity floor 1F1, i

;/. (el rear face in vertical plane (RF), and IF) rear face in horizontal direction (FP21. In

_o_;_:, general, good agreement is seen between the computed and experimental data. The
.o /_

_-_- computed values of C on the rear face are lower than the experimental data. Also,

_//!_,_ the computed values of C on the cavity floor are slightly lower.

•, Discrepancies in the computational results can be attributed to the following

_ i. reasons:

_, 111. turbulence model, 121. coarsenessof the i_'Ids, 131. numerical truncation

•oo,_ error, 141. explicit addition or artificial viscosity.

o_ Shown in Pig. 5.9 are the Frequencyspectra of' the overall sound pressure level

_,;- at two locations along the cavity centerline, where data has been recorded. The pickup !

ooi_ Points are located in the cavity floor X/L : 0.4, and 0.8, From experimental

_ observations[161, it Is known that there are two resonant frequencies. A time series

°'_.. analysis in the frequency domain has been performed for histories oF Instantaneous

i_ pressure. The pressure dota hove been converted into _und-pressure level (_PL) in

_ ii.:: decibels ldBl, The frequency domain has been plotted up to 1.2 megahertz and

,. compared with the experime_tal data. Basically, the computations predict the resonant ,

,:. frequencies, but cannot predict the SPL magnitudes eccurately. The discrepancies in

[.- _,
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:; the sound pressure level may be attributed to the relatively short periods of data

_.. coll,¢tion.

i 5.2 Case 2 : Math : 2.16, L/D : 3, yaw : 460. £MFD Scheme .

_",._ Because of the yaw angle, this is not • symmetric f1_w anymort,. So we need

': to calculate the full cavity. In order to save the time for developini_ the flow, we used

: the primitive variables output file of Case I as the initial conditior.s of thi_ case. We tl

t
:: can envision the cavity flow with yaw to be a mixed type of two different I/D ratios;

L/D=3 .tn the streamwise direction and W/D=5 in the croseflow direction.

i The instantaneous velocity vectors (to : 28.9) of longitudinal planes at four

,:. different spenwise locations, (Z/W : 0.0456, 0.6250, 0.8501, and 0.9783) are shown in

Fig.5.10. Prom this figure, we can see a larger vortex and a smaller vortex within the

cavity, which is a basic deep cavity "structure. The instantaneous density contours

;" (te=25.9) at the same four spenwise locations are shown in Fig.5.11. The ori_nized
i :; •

_ ': behavior of the shear layer is clearly seen as it bridges the cavity opening. The shear

. layer interacts .at the rear face and causes a reversed flow within the cavity, resulting

:. in a bigger vortex. At _ instant, the density contours show that mass is being

• expelled at the cavity rear face. Due to the expulsion of mass, the shear layer is

, _:: deflected up. There is a large region of separation on the rear flat plato (PP2). This

is caused by the expensian around the sharp corner at the rear face. The variation !

_*'_ of properties it, the spenwiss direction of Case 2 shows similarities to the typical

structure of a deep cavity at yaw angle equal to zero. !

_; Presented in Pig.5.12, are the instantaneous (t_ : 25.9) cross flow velocity vector :
-_-:_,

plots at four axial locations (X/D:0.2574, 0.8676, 2.5165, and 9.9391). At the X/D :
',_ ,. _ ,

_:_ 0.2574 location, the flow within the cavity is going in the reverse direction to the

!_ freestroam, and form a smaller counterclockwise vortex close to the front side wall i

t
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!i' (PSW, see Fql,4,1a), In th_ rNr side wall, the Ilow dips into the cavity, and deflects

?i!:• OUt in the rear side of the cuvJty. The density co,tours of the cross flow are |hewn el

'J:!' in Fill. 6.13. The shear layer is very stable near the front of' the cavity, but there are

":,' u lot of fluctuations h_ the rear part gf the cavity. W, still can _ee the uhear layer 1
AL:

'Pt

-, 'ii_ brldlle th= cavity. Prsssur.l lind Much number contours are shown in Fill. 5.14 and

,i, Pill. 5.15. Both th_ Ioni_tudinal and the cross flow direction flgure_ indica,,e ,_:,e
.-J |
-_:_ charaetarist_,es of • deep cavity.

: The instantaneous (tl = 28.91 particle traces limited to four streamwise planes

i: (7,/W : 0.0466, 0.321, 0.85, and 0._783) ere displayed in Pill. 5.16. The formation of ;

_'_: a larger vortex and two counter r,tatlng vortices are evident from these figures. The

,_i_ particle traces limited to cross flow planes st five different locations (X/D : 0.2874,

,_! 0.8676, 1.7998, 2.5165, and 2.93911are shownin Fig. 5.17. The particle traces at four

_! dflTerent horizontal plemeswithin the cavity (YID : 0.0276, 0.2323, 0.5, and 0.89361 are

=_,_ shown in Fl8. 5.18. We can observe that shear layer brings in air mass and
, ;!_"

,; momentum. The particle traces are shown in Pig. _.19. The shear layer first impinges

_,,/, on the rcar face, then it deflects toward the rear side wall. It bends downward

:_ towards the cavity floor. A clockwimr rotatin£ vortex is formed w_thln the cavity.

•,,e Prom the top v_ew0clockwise vortex hs the main vortex direction. That i. the most

_r distinctive difference From the zero yaw anjie cavity flow. In Case !, the main vortex

_. is predomlnantiy in the vertical plane of the cavity. But in Case 2, the predominant

_!i plane edrthe main vortex inclines at a certain degree with the vortical plane, it is not

'i only rotating in the strumwlse direetio, but also in the horizontal plane.

:ii The sh, ar stress vectors and contom on the e_vity floor are shown in Fill. $.20a

_:,, and Fig. 5.20b. As espacted, the main concentration of the shear stress is at the

'_ downstream corner of the cavity.

_"

,.. ,.
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6.$ Cases 3 and 4 ; Meci_-'_t.B6, L/D_6.7, EMF'D and IUI_V _hemes

in an attempt to compare the eolutlo.s of the EMFD an(; IUPV scheme_,Case

a and Cose 4 are discussedtoaether. The ",_or simlia," features betwnn these cases -"

are 88 follows: I. the physlr,al domain and tl,e iffld which cover_ I_; 2, the governinff i
t,

equations of the flow; 3, the turbulence m_lel; 4. initial and boundary conditions;5, the

physical elapsed times (up to two sijn_cant d}_hJ). The m_Jor ,onsln',llar features

between these cases are ".he following: I. the solution sad dlscretization algorithms; 2. !1

the manner in which the physical domain is mapped on to the computational domain, ?

i.e., the evaluation of the coordinate transformation metrics and Jacoi_ians; 3. the

numerical dluipation, i.e., the artlflcial dissipation of EMFD versus the natural

dissipation of IUFV; 4. aithouah the total elapsed times are similar, the computational

time steps which add up to the elapsed time are totally differeat; IS.32-bit arithmetic t

_ (haft-precision) of the CYBER-205 computer is used for the EMFD scheme, but 64-bit

arithmetic of the CRAY-2 computer is used for the IUFV scheme.

A preliminary numerical study was conducted to determine the effects of eddy

viscosity. .Virst, a case was run without any eddy viscosity, i.e. as a laminar flow

Then, the eddy viscosity was included in the computations only on the h,rizontal wa',ls.

Both of' the test rases, predict the shear layer impinatnfl on the cavity which is

incorrect for open cavity flow. When the eddy viscosity hs computed as modified as

doscrib_ in chapter 3, then the correct predictions are obtained.

The instantaneous( t.:3.253 ) velocity vectors at two spanwise planes

(Z/W:0.7081, 0.9764) of both cases are shown in Fig.5.21. in both cases, we can see

a eiockwiso rotating vortex which dominates the cavity. The shear layer is clearly seen :

to bridffe the cavity in beth cases.
" 4

The density contours( tt---3._53 ) of both cases in variou¢ spanwiso pl_,les are _ '

displayed in Piff.5.22. The density contours show that mass is being expelled at the

.... L)UUUUUU'I-TSE13



i rcar portion of the cavity. Duo to the expulsion of mMs, the shear isyer is deflects4

_ up. We con see a shock generated at the rear face, end Lhere Is separation on the •

l .. roar fist plate (VP2).
)

'1 The Instantaneous( to:3.253 ) Much number contours of both cases in various

ii.. spanwise planes are shown in Fig.8.23. When the shear layer is deflected up in the '

rear portion of the cavity, we can see the vort!ces generated in the shear layer. The

comparison of instantaneous streamlines( tt:3.263 ) in various planes of both case_.

are shown in Pig,6.24. We can see a big vortex within the cavity, end the shear layer

is deflected out in the rear portion of the cavity. The instantaneous limiting 1

streamlines( t,:3._53 ) on the cavity floor of both casesare shown in Fig.5.25. We t

can see the flow reattachment in the rear portion of the cavity. Then the flow is in _,

the upstream direction, and finally, it separates on the front portion of the cavity.

Also, we can see the three-dimensional separation lines in both eases. In Case 3, there

is a very strong separation generstad in the middle portion of the cavity.
!

From above figures we can understand that both schemes produce approximately

similar flow structures in the cavity.
L

The instantaneous( t_:12.87.6 ) velocity vectors of Ionsitudinal planes at two

spanwisa locations( 7,/W:0.4867, and 0.7881 ) are displayed in Pig.5.26. Note that

these fli_res are for ts= 12.876, which is 9.6 characteristic times after the instant of

Fig.5.21. The 8ensral flow structures are similar. A single vortex ,/omlnateo the

cavity. The shear layer interact8 with the roar face and it deflect8 up. The density

contours( t.: 12.875 ) of the same spenwiseiecatlonsas Pig.5.96 are shown in Pig.5.27.

When the shear layer is*deflected up, shock waves are ganarstod in the rear portion

of the cavity.

" The lnstantansons (t,t : 12.876) total pressure contours of Ionj4t _nsl planes at

various spanwisa locations (Z/W:0., 0.3488, 0.(i027, 0.7327) =f both cases are shown in _

• , .-'--. , _' _-_---__=_ .... •...... ...... , ,
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--_' FIg.&U, The vortas cells m Nen to ul.t in the shear luyer. The discontinuous
1

- : vortex Is distributed from the lip of front face to the rear face. As, we also can see

: from the density contours at ;wo different Instants, that ts tl--3,253 (PIg.6.22) and "
'4;

t,:12.876 1Fi85.271, the vomz cells chanle their positions. Somo vortices ire above

the shear layer towards the rear of the cavity. So, we can conclude that there is t

-=ii vortex shoddin8 phenomenaexisting in the shear layer In beth cases. That Is, it dips

-_ into the cavity and brinp mass with it. Then it brldges the cavity for s few instants
_._ I

_=. wlth no mass entrainment between the internal and external flows. Finally, when the _J

__ shear layer deflects up to open the cavity, vortices are shod from the cavity to outside. !

_' This phenomenon .is confirmed by the solutions oF both schemes as evidenced with the i
/

_,, total pressure contours and density contours. Hence it is concluded that the vortex _

/i shedding phenomenon captured here computotionally is a physical one. _

_, The time averagod pressure ceeMcients from beth solutions are shown in Pig.5.29.

_: The plotted Cp distributions are for the cavity floor centorline, the centorltne on the '

.__ rear face, spanwtee distributions on the cavity floor and the rear face, an_ the _

longitudinal direction on the side wall. Generally they show good agreement with the

: experimental data. The predictions of the IUPV method are slightly better than those
[

,, of" the EMFD method.

The maximum stable time step for the IUFV code (7.48x10:) Is approximately 1.7 ]
: times that ot the EMFD code (4.$gxlGv). This comparison is for th_ solutions advanced

to the same characteristic time. However, each time step computation with the IUFV

code takes oijnffleantly more computer time than the EMFD code. Therefore, a bettor

comparison can be made At follows. The EMFD code needs 4 megaworde computer i,

memory, sml _.(J8 CPU hem for each characteristic time. The IUFV code needs

_pproximetoly 10 megawords computer memory, and 4.31 CPU hours for each

.: charactoristie time. That is, the IUPV scheme is approximately 30_ f_ter but it :
_B

1
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_t! requires 2,6 times More computer memory,. Note that the maximum time step (104)

_i" is at least one order of magnitude smaller than the characteristic times t, (l.6xll_)

-_ .. and td (9.1xlO-). This is necessary to capture the physical fluctuations with the
,)

i numerical Ume accurate solution sdvancin8.
"0 t

• |

i'
f,

r
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0 t,

y,+

i_: Table 5.1. Test condidons for dle four cases
i_+; I '

WidthI l.enlh++,_, icase Mm:h_ T in K Re/mellmr P in Pa yaw Depth " ' "

+'.+i+ +No. number static in million slal/c angle in m in m in m

+ ++

:_2:, 1 2.16 +U.+ 6.$6 6430.| 0 .0127 .os3s .0381

+++++ 2 2.16 168.1 6.56 6430.| 450 .0127 .0635 .0381

,9 ,:o., 3 1._ 210.3 6.56 11425 0 .1108 .0727 .?458

: !ii 4 1.6.5 210.3 6.56 11425 0 .1108 .0727 .7458

,t

.+ ),+

++' Table 5.2. Cavity dimensions and computational grid size
++.

++::
+.

r,o- Grid Size Field Dimcnsions Cavity Dimcnmlom Block

_._:. No. X Y Z X y Z X Y Z
+<_+,

;"_i 1 97 60 36 ._OTS .0587 .0512 .0127 .03175 .0381

++ 2 97 60 71 .1076 .0_87 .1024 +127 .0635 .0381

.... i 3 _20 6.3 28 .lO?S .3753 .1163 3458 .1108 .0727
_!t"

' 'r

!:_ 4 28 120 27 .1163 1.189 .2753 1

!" 20 91 37 .0727 .?458 .1108 .0727 .7458 .1108 2
,o

?: f

I 2

!

d

0 I;

?:

+_," - • + ..................................... +:a:•: ':: .............. _+ : _-:=: .... :+;+ +-_++_++__ :z+ + + + ""4"_'--"'_-"++'_"_+ ...... : • '_"

._° ....... " ++ ..... ,-...+-.+:+;_ + + : _+-'-_:+:+- " ++ ++-:+ ++-+ + ? Zi±__ 2 +2++_ _i+ ++ 2+:;_ ........+ ':"/: !¼28............... ::"++++.++......
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I

Table 5.3 Computational tim_ requirements i
°4r It_

t,_characteristic numbcrof CPU computer
time in millisecond tc run hours

CJ

1 .0679 56 24.63 Cyber205 !

2 .0679 28.9 25.61 Cyber 205
i ii i

3 1.5550 12.875 73.12 Cyber 205 !

i i ii

4 1.5550 12.875 48.6 Cmy :_

J

t

t

I'
t

f'
i

t

6

.1
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Pill. §.4b Instantaneous pressure contot:rsst vmrlouJspanwimeplanes I



Zf_ = 0.2728



Z/W - 0.4415

Z/W- 02728 !

: ZtW - 0.1527

i_ FiB. 6.5a Instantaneous sLrumline pattern 4 various wenwise planes [
/
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(c) front face! (d) cavity fZoor_
(e) rear face in vertical direction_
(f) rear face in horizontal direction.
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D

Z/W=0.9?83 I

: o_:_ Min : : 1.1669 int.. 0.025 ?

/,

°'- i

: Z/W:O.S501 !
- _i' Min : .49251 Max : 1.2546 Int : .036

I

: Z/W-=0.6250

'!_ Min : .2864 Max : 1.0669 Int : .03?
or

c;

Q,

o_ t

SI U_,

o:, l/W=o.o150
!. PAin: ._1147 Max : 1.0002 Int : .022

;. Fi_&l ! Inetantaneoue contours of density at varioue epanwlse planes ..,
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X/l) • 2.9391

l:_J. 5.14 Instantaneo,Jul pressure contour| It various cross flow planes . '
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<_ X/D = 0.8676

1_ l.nm

7

_ml_lll_ "_WlL iS ._9111 1.91|1

_: Fill. 5.15 Instantaneous Mach number ¢ontourt at various cross flow planes



Z/W ,, 0.9783

.i

Z/W =0.6250 /

)

Z/W =0.0456

Fill. 5.16 Instantaneous streamlines at various spanwise plane_
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X/D=2.9391

X/D=2.5165

X/D=1.7998

X/D=0.8676

X/D=02874

Pig.5.17 Instantaneous streamlines at various ¢rossflow planes

00000002-TSA04



89

" Y/D=0.8936 ._

Y/D=0.5000 _ '

!

• Y/D_ I U= :

J

Y/D=0.0276 ]

• Fig.5.18 Instantaneous streamlines at various horizontal planes _!
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:-'_i' """"t Chapter 6

• CONCLUSIONS AND RECOMMENDA'IIONS
it,

Computational simulations of" deep cavities in supersonic regimes have been

•_ performed. Two three-dimensional numerical models have been used to analyze the

, ur_teady flow characteristics of cavity flows. The validity of"the codes have been tested

•._._ by analyzing turbulent flows pest cavities. Computational simulations of the self'

-_ induced oscillatory flows have been generated through time accurate solutions of the

i_-._ Reynolds averaged full Navier-Stokes equations. _hese governing equations have been
._-,

!:: solved by using an explicit, flnlte-d/fference method, and an Implicit, finite-volume

• method. The Reynolds stresses have been modeled using the Baldwin-Lomax algebraic

model with certain modifications. Time averaged and Instantaneous results have been

obtained, and quantitative comparisons with experimental data have been made in terms

of mean static pressure and frequency spectra within the cavit;,. Computational

simulations of cavity flows are important, because parametric studies on three-

._ dimensional cavity flows can be "conducted with relative ease and the time dependent

" properties as well as time averaged values can be obtained. In addition, the flow

structure within the cavity can be visualized computationally. These computational

!_;_ eepabilities are meant to complement the e_perimental work in obtaining a more

:,_., complete understanding of the flow fe_turss within the cavity.

i_ _ Compering the Flow structures or Case I and Case 2, we can see the effect or

:/_ . yaw. When the yaw angle is zero, the length scale which determines the flow structure

! ;
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/'I Is length-to-depth ratio, itowever, when the yaw angle is nonzero, there is no longer

a single length scale for the flow. However, the general structure for L/I) < 3 and

• W/D < 5, is still an open cavity flow. The dominant directions and inclinations of "

"_ the vortices are dramatically different. The number of vorticesare also very dUTerent

_t from the flow.
zero-yaw

/,
:=_' The vortex shedding from the cavity opening is captured eomputationally. This

i._ is caused by the motion of the shear layer as it moves in end out of the cavity. Since '

this shedding is predicted by the numerical solutions from both codes, it is believed to
L

be a physical phenomenon. It Is also believed that this shedding influences the cavity

acousti_ significantly.

For the explicit code, the explicit addition of the artificial viscosity has the

tendency to smear out the instantaneous pressure values in the cavity floor region.

_herefu,'e, a time accurate numerical scheme that is robust and capable of yielding good

results without the addition of artWclal viscosity, results in better time dependent

il:: results. The implicit upwind scheme, which is naturally diulpative, produces better

time dependent data. In addition, clustering the grids near the points where the ingrain-

;. tanaous pressures are picked, also yields better rebaits.

,_ Three_timensional calculations are very expensive, because it takes a long

_i computational time to set the results. Two-dimensional calculations of the cavity

.: centerplane can be used to develop the cavity flow. When the cavity flow is fully

developed (about two characteristic time), then the solution data for the centerplane can i

be treated as the new initial conditions for the three dimensional cavity. In Case I, I

such a treatment can save 86'E of CPU times and in Case $ and 4 this treatment esn
Q

save 80_ of CPU socondeto developthe cavity flows.

The acoustic phenomena is a very important topic of cavity flows. The acoustic

waves generate an additional 90 dB sound pressure level jump in the harmonic frequen-

!,
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• cieb. Although we attempted the acoustic analysesof our results for Cues 2-4, they ,,

have not been completed. An extension of this work should complete this analysis.

( Quantitative comparison with experimental data have been made in terms of mean

" static pressure and acoustic frequencyspectra within the cavity. While most of this

comparison is favorable, the numerical solution of Case ! appears to underpredict the
o

amplitude of _, _,_rmonic frequencies. This may be attributed to "too much viscosity"

due to numerical damping and the eddy viscosity, that alters the pressure oscillations.

A further study using improved numerical damping and eddy viscosity is needed. ;'

It is also recommended that the temperature distributions, which are computed _

herein, are evaluated to show the heat transfer characteristics in a cavity. This is

particularly important for high speed flows.

It is realized that a better comparison oF the two schemes can be obtained if both

codes were run on the same computers. A further study should be conducted with this

consideration.

o
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